Mathematics > Algebraic Geometry
[Submitted on 28 May 2018 (v1), last revised 12 Sep 2019 (this version, v3)]
Title:On Mori chamber and stable base locus decompositions
View PDFAbstract:The effective cone of a Mori dream space admits two wall-and-chamber decompositions called Mori chamber and stable base locus decompositions. In general the former is a non trivial refinement of the latter. We investigate, from both the geometrical and the combinatorial viewpoints, the differences between these decompositions. Furthermore, we provide a criterion to establish whether the two decompositions coincide for a Mori dream space of Picard rank two, and we construct an explicit example of a Mori dream space of Picard rank two for which the decompositions are different, showing that our criterion is sharp. Finally, we classify the smooth toric 3-folds of Picard rank three for which the two decompositions are different.
Submission history
From: Alex Massarenti [view email][v1] Mon, 28 May 2018 13:58:59 UTC (335 KB)
[v2] Tue, 3 Sep 2019 15:17:14 UTC (35 KB)
[v3] Thu, 12 Sep 2019 08:07:10 UTC (37 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.