Mathematics > Algebraic Geometry
[Submitted on 28 May 2018]
Title:A non-Archimedean approach to K-stability
View PDFAbstract:We study K-stability properties of a smooth Fano variety X using non-Archimedean geometry, specifically the Berkovich analytification of X with respect to the trivial absolute value on the ground field. More precisely, we view K-semistability and uniform K-stability as conditions on the space of plurisubharmonic (psh) metrics on the anticanonical bundle of X. Using the non-Archimedean Calabi-Yau theorem and the Legendre transform, this allows us to give a new proof that K-stability is equivalent to Ding stability. By choosing suitable psh metrics, we also recover the valuative criterion of K-stability by Fujita and Li. Finally, we study the asymptotic Fubini-Study operator, which associates a psh metric to any graded filtration (or norm) on the anticanonical ring. Our results hold for arbitrary smooth polarized varieties, and suitable adjoint/twisted notions of K-stability and Ding stability. They do not rely on the Minimal Model Program.
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.