Mathematics > Algebraic Geometry
[Submitted on 28 May 2018 (v1), last revised 6 Jul 2020 (this version, v2)]
Title:Moduli spaces of Hecke modifications for rational and elliptic curves
View PDFAbstract:We propose definitions of complex manifolds $\mathcal{P}_M(X,m,n)$ that could potentially be used to construct the symplectic Khovanov homology of $n$-stranded links in lens spaces. The manifolds $\mathcal{P}_M(X,m,n)$ are defined as moduli spaces of Hecke modifications of rank 2 parabolic bundles over an elliptic curve $X$. To characterize these spaces, we describe all possible Hecke modifications of all possible rank 2 vector bundles over $X$, and we use these results to define a canonical open embedding of $\mathcal{P}_M(X,m,n)$ into $M^s(X,m+n)$, the moduli space of stable rank 2 parabolic bundles over $X$ with trivial determinant bundle and $m+n$ marked points. We explicitly compute $\mathcal{P}_M(X,1,n)$ for $n=0,1,2$. For comparison, we present analogous results for the case of rational curves, for which a corresponding complex manifold $\mathcal{P}_M(\mathbb{CP}^1,3,n)$ is isomorphic for $n$ even to a space $\mathcal{Y}(S^2,n)$ defined by Seidel and Smith that can be used to compute the symplectic Khovanov homology of $n$-stranded links in $S^3$.
Submission history
From: Allen David Boozer [view email][v1] Mon, 28 May 2018 21:57:13 UTC (46 KB)
[v2] Mon, 6 Jul 2020 04:56:15 UTC (39 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.