Mathematics > Statistics Theory
[Submitted on 6 Jun 2018 (v1), last revised 6 Jul 2018 (this version, v2)]
Title:Rademacher complexity for Markov chains : Applications to kernel smoothing and Metropolis-Hasting
View PDFAbstract:Following the seminal approach by Talagrand, the concept of Rademacher complexity for independent sequences of random variables is extended to Markov chains. The proposed notion of "block Rademacher complexity" (of a class of functions) follows from renewal theory and allows to control the expected values of suprema (over the class of functions) of empirical processes based on Harris Markov chains as well as the excess probability. For classes of Vapnik-Chervonenkis type, bounds on the "block Rademacher complexity" are established. These bounds depend essentially on the sample size and the probability tails of the regeneration times. The proposed approach is employed to obtain convergence rates for the kernel density estimator of the stationary measure and to derive concentration inequalities for the Metropolis-Hasting algorithm.
Submission history
From: François Portier [view email][v1] Wed, 6 Jun 2018 10:40:18 UTC (25 KB)
[v2] Fri, 6 Jul 2018 07:11:49 UTC (25 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.