Mathematics > Symplectic Geometry
[Submitted on 10 Jun 2018 (v1), last revised 16 Jun 2020 (this version, v2)]
Title:Refined disk potentials for immersed Lagrangian surfaces
View PDFAbstract:We define a refined Gromov-Witten disk potential of self-transverse monotone immersed Lagrangian surfaces in a symplectic 4-manifold as an element in a capped version of the Chekanov--Eliashberg dg-algebra of the singularity links of the double points (a collection of Legendrian Hopf links). We give a surgery formula that expresses the potential after smoothing a double point.
We study refined potentials of monotone immersed Lagrangian spheres in the complex projective plane and find monotone spheres that cannot be displaced from complex lines and conics by symplectomorphisms. We also derive general restrictions on sphere potentials using Legendrian lifts to the contact 5-sphere.
Submission history
From: Georgios Dimitroglou Rizell [view email][v1] Sun, 10 Jun 2018 20:56:14 UTC (185 KB)
[v2] Tue, 16 Jun 2020 16:41:53 UTC (194 KB)
Current browse context:
math.SG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.