Mathematics > Analysis of PDEs
[Submitted on 12 Jun 2018 (v1), last revised 13 Jun 2018 (this version, v2)]
Title:Well-posedness, regularity and asymptotic analyses for a fractional phase field system
View PDFAbstract:This paper is concerned with a non-conserved phase field system of Caginalp type in which the main operators are fractional versions of two fixed linear operators $A$ and $B$. The operators $A$ and $B$ are supposed to be densely defined, unbounded, self-adjoint, monotone in the Hilbert space $L^2(\Omega)$, for some bounded and smooth domain $\Omega$, and have compact resolvents. Our definition of the fractional powers of operators uses the approach via spectral theory. A nonlinearity of double-well type occurs in the phase equation and either a regular or logarithmic potential, as well as a non-differentiable potential involving an indicator function, is admitted in our approach. We show general well-posedness and regularity results, extending the corresponding results that are known for the non-fractional elliptic operators with zero Neumann conditions or other boundary conditions like Dirichlet or Robin ones. Then, we investigate the longtime behavior of the system, by fully characterizing every element of the $\omega$-limit as a stationary solution. In the final part of the paper we study the asymptotic behavior of the system as the parameter $\sigma$ appearing in the operator $B^{2\sigma}$ that plays in the phase equation decreasingly tends to zero. We can prove convergence to a phase relaxation problem at the limit, in which an additional term containing the projection of the phase variable on the kernel of $B$ appears.
Submission history
From: Pierluigi Colli [view email][v1] Tue, 12 Jun 2018 16:16:14 UTC (34 KB)
[v2] Wed, 13 Jun 2018 18:37:59 UTC (34 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.