Mathematics > Numerical Analysis
[Submitted on 19 Jun 2018]
Title:A locking-free face-centred finite volume (FCFV) method for linear elasticity
View PDFAbstract:A face-centred finite volume (FCFV) method is proposed for the linear elasticity equation. The FCFV is a mixed hybrid formulation, featuring a system of first-order equations, that defines the unknowns on the faces (edges in two dimensions) of the mesh elements. The symmetry of the stress tensor is strongly enforced using the well-known Voigt notation and the displacement and stress fields inside each cell are obtained element-wise by means of explicit formulas. The resulting FCFV method is robust and locking-free in the nearly incompressible limit. Numerical experiments in two and three dimensions show optimal convergence of the displacement and the stress fields without any reconstruction. Moreover, the accuracy of the FCFV method is not sensitive to mesh distortion and stretching. Classical benchmark tests including Kirch's plate and Cook's membrane problems in two dimensions as well as three dimensional problems involving shear phenomenons, pressurised thin shells and complex geometries are presented to show the capability and potential of the proposed methodology.
Submission history
From: Matteo Giacomini [view email][v1] Tue, 19 Jun 2018 23:26:55 UTC (5,372 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.