Mathematics > Differential Geometry
[Submitted on 20 Jun 2018]
Title:Brown-York mass and positive scalar curvature I - First eigenvalue problem and its applications
View PDFAbstract:In this article, we investigate the connection between scalar curvature and first eigenfunctions via positive mass theorem for Brown-York mass. For compact manifolds with nice boundary, we show that a sharp inequality holds for first eigenfunctions when posing appropriate assumptions on scalar curvature and first eigenvalue. This inequality implies that for a compact n-dimensional manifold with boundary, its first eigenvalue is no less that n, if its scalar curvature is at least n(n-1) with appropriate boundary conditions posed, where equality holds if and only the manifold is isometric to the canonical upper hemisphere. As an application, we derive an estimate for the area of event horizon in a vacuum static space with positive cosmological constant, which reveals an interesting connection between the area of event horizon and Brown-York mass. This estimate generalizes a similar result of Shen for three dimensional vacuum static spaces and also improves the uniqueness result of de Sitter space-time due to Hizagi-Montiel-Raulot.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.