Mathematics > Quantum Algebra
[Submitted on 1 Jul 2018]
Title:Fusion categories for affine vertex algebras at admissible levels
View PDFAbstract:The main result is that the category of ordinary modules of an affine vertex operator algebra of a simply laced Lie algebra at admissible level is rigid and thus a braided fusion category. If the level satisfies a certain coprime property then it is even a modular tensor category. In all cases open Hopf links coincide with the corresponding normalized S-matrix entries of torus one-point functions. This is interpreted as a Verlinde formula beyond rational vertex operator algebras.
A preparatory Theorem is a convenient formula for the fusion rules of rational principal W-algebras of any type.
Current browse context:
math.QA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.