Computer Science > Numerical Analysis
[Submitted on 3 Jul 2018 (v1), last revised 30 Nov 2018 (this version, v2)]
Title:Higher-dimension Tensor Completion via Low-rank Tensor Ring Decomposition
View PDFAbstract:The problem of incomplete data is common in signal processing and machine learning. Tensor completion algorithms aim to recover the incomplete data from its partially observed entries. In this paper, taking advantages of high compressibility and flexibility of recently proposed tensor ring (TR) decomposition, we propose a new tensor completion approach named tensor ring weighted optimization (TR-WOPT). It finds the latent factors of the incomplete tensor by gradient descent algorithm, then the latent factors are employed to predict the missing entries of the tensor. We conduct various tensor completion experiments on synthetic data and real-world data. The simulation results show that TR-WOPT performs well in various high-dimension tensors. Furthermore, image completion results show that our proposed algorithm outperforms the state-of-the-art algorithms in many situations. Especially when the missing rate of the test images is high (e.g., over 0.9), the performance of our TR-WOPT is significantly better than the compared algorithms.
Submission history
From: Longhao Yuan [view email][v1] Tue, 3 Jul 2018 04:47:35 UTC (6,089 KB)
[v2] Fri, 30 Nov 2018 02:46:30 UTC (6,090 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.