Mathematics > Classical Analysis and ODEs
[Submitted on 4 Jul 2018 (v1), last revised 14 Oct 2018 (this version, v2)]
Title:On the geometry of the Clairin theory of conditional symmetries for higher-order systems of PDEs with applications
View PDFAbstract:This work presents a geometrical formulation of the Clairin theory of conditional symmetries for higher-order systems of partial differential equations (PDEs). We devise methods for obtaining Lie algebras of conditional symmetries from known conditional symmetries, and unnecessary previous assumptions of the theory are removed. As a consequence, new insights into other types of conditional symmetries arise. We then apply the so-called PDE Lie systems to the derivation and analysis of Lie algebras of conditional symmetries. In particular, we develop a method for obtaining solutions of a higher-order system of PDEs via the solutions and geometric properties of a PDE Lie system, whose form gives a Lie algebra of conditional symmetries of the Clairin type. Our methods are illustrated with physically relevant examples such as nonlinear wave equations, the Gauss--Codazzi equations for minimal soliton surfaces, and generalised Liouville equations.
Submission history
From: Javier de Lucas [view email][v1] Wed, 4 Jul 2018 14:23:42 UTC (51 KB)
[v2] Sun, 14 Oct 2018 20:05:40 UTC (59 KB)
Current browse context:
math.CA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.