Mathematics > Optimization and Control
[Submitted on 9 Jul 2018]
Title:A primal-dual interior-point relaxation method for nonlinear programs
View PDFAbstract:We prove that the classic logarithmic barrier problem is equivalent to a particular logarithmic barrier positive relaxation problem with barrier and scaling parameters. Based on the equivalence, a line-search primal-dual interior-point relaxation method for nonlinear programs is presented. Our method does not require any primal or dual iterates to be interior-points, which is prominently different from the existing interior-point methods in the literature. A new logarithmic barrier penalty function dependent on both primal and dual variables is used to prompt the global convergence of the method, where the penalty parameter is updated adaptively. Without assuming any regularity condition, it is proved that our method will terminate at an approximate KKT point of the original problem provided the barrier parameter tends zero. Otherwise, either an approximate infeasible stationary point or an approximate singular stationary point of the original problem will be found. Some preliminary numerical results are reported, including the results for a well-posed problem for which many line-search interior-point methods were demonstrated not to be globally convergent, a feasible problem for which the LICQ and the MFCQ fail to hold at the solution and an infeasible problem, and for some standard test problems of the CUTE collection. These results show that our algorithm is not only efficient for well-posed feasible problems, but also is applicable for some ill-posed feasible problems and some even infeasible problems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.