Mathematics > Combinatorics
[Submitted on 13 Jul 2018]
Title:The sepr-sets of sign patterns
View PDFAbstract:Given a real symmetric $n\times n$ matrix, the sepr-sequence $t_1\cdots t_n$ records information about the existence of principal minors of each order that are positive, negative, or zero. This paper extends the notion of the sepr-sequence to matrices whose entries are of prescribed signs, that is, to sign patterns. A sufficient condition is given for a sign pattern to have a unique sepr-sequence, and it is conjectured to be necessary. The sepr-sequences of sign semi-stable patterns are shown to be well-structured; in some special circumstances, the sepr-sequence is enough to guarantee the sign pattern being sign semi-stable. In alignment with previous work on symmetric matrices, the sepr-sequences for sign patterns realized by symmetric nonnegative matrices of orders two and three are characterized.
Submission history
From: Jephian C.-H. Lin [view email][v1] Fri, 13 Jul 2018 00:32:16 UTC (2,498 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.