Mathematics > Algebraic Geometry
[Submitted on 13 Jul 2018 (v1), last revised 13 Aug 2019 (this version, v3)]
Title:Toroidal Schubert Varieties
View PDFAbstract:Levi subgroup actions on Schubert varieties are studied. In the case of partial flag varieties, the horospherical actions are determined. This leads to a characterization of the toroidal and horospherical partial flag varieties with Picard number 1. In the more general case, we provide a set of necessary conditions for the action of a Levi subgroup on a Schubert variety to be toroidal. The singular locus of a (co)minuscule Schubert variety is shown to contain all the $L_{max}$-stable Schubert subvarieties, where $L_{max}$ is the standard Levi subgroup of the maximal parabolic which acts on the Schubert variety by left multiplication. In type A, the effect of the Billey-Postnikov decomposition on toroidal Schubert varieties is obtained.
Submission history
From: Mahir Bilen Can [view email][v1] Fri, 13 Jul 2018 01:17:50 UTC (25 KB)
[v2] Wed, 17 Jul 2019 02:35:42 UTC (21 KB)
[v3] Tue, 13 Aug 2019 01:14:26 UTC (21 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.