Mathematics > Algebraic Geometry
[Submitted on 14 Jul 2018 (v1), last revised 19 Aug 2019 (this version, v2)]
Title:On the Gorensteinization of Schubert Varieties via Boundary Divisors
View PDFAbstract:We will describe a one-step "Gorensteinization" process for a Schubert variety by blowing-up along its boundary divisor. The local question involves Kazhdan-Lusztig varieties which can be degenerated to affine toric schemes defined using the Stanley-Reisner ideal of a subword complex. The blow-up along the boundary in this toric case is in fact Gorenstein. We show that there exists a degeneration of the blow-up of the Kazhdan-Lusztig variety to this Gorenstein scheme, allowing us to extend this result to Schubert varieties in general. The potential use of this one-step Gorensteinization to describe the non-Gorenstein locus of Schubert varieties is discussed, as well as the relationship between Gorensteinizations and the convergence of the Nash blow-up process in the toric case.
Submission history
From: Sergio Da Silva [view email][v1] Sat, 14 Jul 2018 16:19:35 UTC (45 KB)
[v2] Mon, 19 Aug 2019 07:17:42 UTC (69 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.