Computer Science > Information Theory
[Submitted on 15 Jul 2018 (v1), last revised 2 Apr 2019 (this version, v3)]
Title:Codes with hierarchical locality from covering maps of curves
View PDFAbstract:Locally recoverable (LRC) codes provide ways of recovering erased coordinates of the codeword without having to access each of the remaining coordinates. A subfamily of LRC codes with hierarchical locality (H-LRC codes) provides added flexibility to the construction by introducing several tiers of recoverability for correcting different numbers of erasures. We present a general construction of codes with 2-level hierarchical locality from maps between algebraic curves and specialize it to several code families obtained from quotients of curves by a subgroup of the automorphism group, including rational, elliptic, Kummer, and Artin-Schreier curves. We further address the question of H-LRC codes with availability, and suggest a general construction of such codes from fiber products of curves. Detailed calculations of parameters for H-LRC codes with availability are performed for Reed-Solomon- and Hermitian-like code families. Finally, we construct asymptotically good families of H-LRC codes from curves related to the Garcia-Stichtenoth tower.
Submission history
From: Alexander Barg [view email][v1] Sun, 15 Jul 2018 01:14:58 UTC (27 KB)
[v2] Thu, 16 Aug 2018 02:07:46 UTC (29 KB)
[v3] Tue, 2 Apr 2019 14:02:01 UTC (39 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.