Mathematics > Quantum Algebra
[Submitted on 16 Jul 2018 (v1), last revised 27 Mar 2020 (this version, v3)]
Title:PBW property for associative universal enveloping algebras over an operad
View PDFAbstract:Given a symmetric operad $\mathcal{P}$ and a $\mathcal{P}$-algebra $V$, the associative universal enveloping algebra ${\mathsf{U}_{\mathcal{P}}}$ is an associative algebra whose category of modules is isomorphic to the abelian category of $V$-modules. We study the notion of PBW property for universal enveloping algebras over an operad.
In case $\mathcal{P}$ is Koszul a criterion for the PBW property is found. A necessary condition on the Hilbert series for $\mathcal{P}$ is discovered. Moreover, given any symmetric operad $\mathcal{P}$, together with a Gröbner basis $G$, a condition is given in terms of the structure of the underlying trees associated with leading monomials of $G$, sufficient for the PBW property to hold.
Examples are provided.
Submission history
From: Anton Khoroshkin [view email][v1] Mon, 16 Jul 2018 14:05:33 UTC (24 KB)
[v2] Wed, 7 Aug 2019 12:22:52 UTC (27 KB)
[v3] Fri, 27 Mar 2020 04:46:37 UTC (31 KB)
Current browse context:
math.QA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.