Computer Science > Computational Geometry
[Submitted on 10 Jul 2018 (v1), last revised 19 Mar 2019 (this version, v3)]
Title:Computing the Homology of Semialgebraic Sets I: Lax Formulas
View PDFAbstract:We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of closed semialgebraic sets given by Boolean formulas without negations over lax polynomial inequalities. The algorithm works in weak exponential time. This means that outside a subset of data having exponentially small measure, the cost of the algorithm is single exponential in the size of the data.
All previous algorithms solving this problem have doubly exponential complexity (and this is so for almost all input data). Our algorithm thus represents an exponential acceleration over state-of-the-art algorithms for all input data outside a set that vanishes exponentially fast.
Submission history
From: Josue Tonelli-Cueto [view email][v1] Tue, 10 Jul 2018 12:53:32 UTC (46 KB)
[v2] Thu, 6 Dec 2018 11:31:02 UTC (49 KB)
[v3] Tue, 19 Mar 2019 13:38:23 UTC (49 KB)
Current browse context:
cs.CG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.