Mathematics > Analysis of PDEs
[Submitted on 19 Jul 2018 (v1), last revised 13 Jun 2019 (this version, v2)]
Title:On the spectral problem associated with the time-periodic nonlinear Schrödinger equation
View PDFAbstract:According to its Lax pair formulation, the nonlinear Schrödinger (NLS) equation can be expressed as the compatibility condition of two linear ordinary differential equations with an analytic dependence on a complex parameter. The first of these equations---often referred to as the \emph{$x$-part} of the Lax pair---can be rewritten as an eigenvalue problem for a Zakharov-Shabat operator. The spectral analysis of this operator is crucial for the solution of the initial value problem for the NLS equation via inverse scattering techniques. For space-periodic solutions, this leads to the existence of a Birkhoff normal form, which beautifully exhibits the structure of NLS as an infinite-dimensional completely integrable system. In this paper, we take the crucial steps towards developing an analogous picture for time-periodic solutions by performing a spectral analysis of the \emph{$t$-part} of the Lax pair with a periodic potential.
Submission history
From: Ronald Quirchmayr [view email][v1] Thu, 19 Jul 2018 12:47:13 UTC (2,803 KB)
[v2] Thu, 13 Jun 2019 08:50:07 UTC (2,817 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.