Mathematics > Dynamical Systems
[Submitted on 19 Jul 2018 (v1), last revised 19 Mar 2021 (this version, v2)]
Title:Two algorithms for a fully coupled and consistently macroscopic PDE-ODE system modeling a moving bottleneck on a road
View PDFAbstract:In this paper we propose two numerical algorithms to solve a coupled PDE-ODE system which models a slow vehicle (bottleneck) moving on a road together with other cars. The resulting system is fully coupled because the dynamics of the slow vehicle depends on the density of cars and, at the same time, it causes a capacity drop in the road, thus limiting the car flux. The first algorithm, based on the Wave Front Tracking method, is suitable for theoretical investigations and convergence results. The second one, based on the Godunov scheme, is used for numerical simulations. The case of multiple bottlenecks is also investigated.
Submission history
From: Corrado Lattanzio [view email][v1] Thu, 19 Jul 2018 14:24:42 UTC (1,174 KB)
[v2] Fri, 19 Mar 2021 09:33:36 UTC (3,147 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.