Mathematics > Probability
[Submitted on 19 Jul 2018 (v1), last revised 24 May 2019 (this version, v3)]
Title:Harmonic functions on mated-CRT maps
View PDFAbstract:A mated-CRT map is a random planar map obtained as a discretized mating of correlated continuum random trees. Mated-CRT maps provide a coarse-grained approximation of many other natural random planar map models (e.g., uniform triangulations and spanning tree-weighted maps), and are closely related to $\gamma$-Liouville quantum gravity (LQG) for $\gamma \in (0,2)$ if we take the correlation to be $-\cos(\pi\gamma^2/4)$. We prove estimates for the Dirichlet energy and the modulus of continuity of a large class of discrete harmonic functions on mated-CRT maps, which provide a general toolbox for the study of the quantitative properties random walk and discrete conformal embeddings for these maps.
For example, our results give an independent proof that the simple random walk on the mated-CRT map is recurrent, and a polynomial upper bound for the maximum length of the edges of the mated-CRT map under a version of the Tutte embedding. Our results are also used in other work by the first two authors which shows that for a class of random planar maps --- including mated-CRT maps and the UIPT --- the spectral dimension is two (i.e., the return probability of the simple random walk to its starting point after $n$ steps is $n^{-1+o_n(1)}$) and the typical exit time of the walk from a graph-distance ball is bounded below by the volume of the ball, up to a polylogarithmic factor.
Submission history
From: Jason Miller [view email][v1] Thu, 19 Jul 2018 16:04:05 UTC (488 KB)
[v2] Wed, 1 May 2019 16:52:51 UTC (585 KB)
[v3] Fri, 24 May 2019 20:04:40 UTC (592 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.