Mathematics > Probability
[Submitted on 19 Jul 2018 (v1), last revised 10 Jun 2021 (this version, v3)]
Title:An invariance principle for ergodic scale-free random environments
View PDFAbstract:There are many classical random walk in random environment results that apply to ergodic random planar environments. We extend some of these results to random environments in which the length scale varies from place to place, so that the law of the environment is in a certain sense only translation invariant {\em modulo scaling}. For our purposes, an ``environment'' consists of an infinite random planar map embedded in $\mathbb C$, each of whose edges comes with a positive real conductance. Our main result is that under modest constraints (translation invariance modulo scaling together with the finiteness of a type of specific energy) a random walk in this kind of environment converges to Brownian motion modulo time parameterization in the quenched sense.
Environments of the type considered here arise naturally in the study of random planar maps and Liouville quantum gravity. In fact, the results of this paper are used in separate works to prove that certain random planar maps (embedded in the plane via the so-called Tutte embedding) have scaling limits given by SLE-decorated Liouville quantum gravity, and also to provide a more explicit construction of Brownian motion on the Brownian map. However, the results of this paper are much more general and can be read independently of that program.
One general consequence of our main result is that if a translation invariant (modulo scaling) random embedded planar map and its dual have finite energy per area, then they are close on large scales to a minimal energy embedding (the harmonic embedding). To establish Brownian motion convergence for an {\em infinite} energy embedding, it suffices to show that one can perturb it to make the energy finite.
Submission history
From: Jason Miller [view email][v1] Thu, 19 Jul 2018 16:08:09 UTC (1,394 KB)
[v2] Tue, 11 Sep 2018 17:28:39 UTC (1,412 KB)
[v3] Thu, 10 Jun 2021 16:23:54 UTC (1,417 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.