Mathematics > Probability
[Submitted on 19 Jul 2018]
Title:Exact asymptotics for Duarte and supercritical rooted kinetically constrained models
View PDFAbstract:Kinetically constrained models (KCM) are reversible interacting particle systems on $\mathbb Z^d$ with continuous time Markov dynamics of Glauber type, which represent a natural stochastic (and non-monotone) counterpart of the family of cellular automata known as $\mathcal U$-bootstrap percolation. Furthermore, KCM have an interest in their own since they display some of the most striking features of the liquid-glass transition, a major and longstanding open problem in condensed matter physics. A key issue for KCM is to identify the scaling of the characteristic time scales when the equilibrium density of empty sites, $q$, goes to zero. In [19,20] a general scheme was devised to determine a sharp upper bound for these time scales. Our paper is devoted to developing a (very different) technique which allows to prove matching lower bounds. We analyse the class of two-dimensional supercritical rooted KCM and the Duarte KCM, the most studied critical $1$-rooted model. We prove that the relaxation time and the mean infection time diverge for supercritical rooted KCM as $e^{\Theta((\log q)^2)}$ and for Duarte KCM as $e^{\Theta((\log q)^4/q^2)}$ when $q\downarrow 0$. These results prove the conjectures put forward in [20,22], and establish that the time scales for these KCM diverge much faster than for the corresponding $\mathcal U$-bootstrap processes, the main reason being the occurrence of energy barriers which determine the dominant behaviour for KCM, but which do not matter for the bootstrap dynamics.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.