Mathematics > Optimization and Control
[Submitted on 19 Jul 2018 (v1), last revised 18 Dec 2018 (this version, v2)]
Title:Limited Memory Kelley's Method Converges for Composite Convex and Submodular Objectives
View PDFAbstract:The original simplicial method (OSM), a variant of the classic Kelley's cutting plane method, has been shown to converge to the minimizer of a composite convex and submodular objective, though no rate of convergence for this method was known. Moreover, OSM is required to solve subproblems in each iteration whose size grows linearly in the number of iterations. We propose a limited memory version of Kelley's method (L-KM) and os OSM that requires limited memory (at most n + 1 constraints for an n-dimensional problem) independent of the iteration. We prove convergence for L-KM when the convex part of the objective (g) is strongly convex and show it converges linearly when g is also smooth. Our analysis relies on duality between minimization of the composite objective and minimization of a convex function over the corresponding submodular base polytope. We introduce a limited memory version, L-FCFW, of the Fully-Corrective Frank-Wolfe (FCFW) method with approximate correction, to solve the dual problem. We show that L-FCFW and L-KM are dual algorithms that produce the same sequence of iterates; hence both converge linearly (when g is smooth and strongly convex) and with limited memory. We propose L-KM to minimize composite convex and submodular objectives; however, our results on L-FCFW hold for general polytopes and may be of independent interest.
Submission history
From: Song Zhou [view email][v1] Thu, 19 Jul 2018 16:53:10 UTC (510 KB)
[v2] Tue, 18 Dec 2018 02:09:01 UTC (523 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.