Mathematics > Quantum Algebra
[Submitted on 24 Jul 2018 (v1), last revised 17 Oct 2020 (this version, v4)]
Title:Hodge Theory of the Turaev Cobracket and the Kashiwara--Vergne Problem
View PDFAbstract:In this paper we show that, after completing in the $I$-adic topology, the Turaev cobracket on the vector space freely generated by the closed geodesics on a smooth, complex algebraic curve $X$ with an algebraic framing is a morphism of mixed Hodge structure. We combine this with results of a previous paper (arXiv:1710.06053) on the Goldman bracket to construct torsors of solutions of the Kashiwara--Vergne problem in all genera. The solutions so constructed form a torsor under a prounipotent group that depends only on the topology of the framed surface. We give a partial presentation of these groups. Along the way, we give a homological description of the Turaev cobracket.
Submission history
From: Richard Hain [view email][v1] Tue, 24 Jul 2018 16:16:15 UTC (31 KB)
[v2] Tue, 8 Jan 2019 17:22:00 UTC (35 KB)
[v3] Mon, 27 Apr 2020 15:11:20 UTC (64 KB)
[v4] Sat, 17 Oct 2020 19:38:14 UTC (64 KB)
Current browse context:
math.QA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.