Mathematics > Differential Geometry
[Submitted on 25 Jul 2018]
Title:Generalized Kähler metrics from Hamiltonian deformations
View PDFAbstract:We give a new characterization of generalized Kähler structures in terms of their corresponding complex Dirac structures. We then give an alternative proof of Hitchin's partial unobstructedness for holomorphic Poisson structures. Our main application is to show that there is a corresponding unobstructedness result for arbitrary generalized Kähler structures. That is, we show that any generalized Kähler structure may be deformed in such a way that one of its underlying holomorphic Poisson structures remains fixed, while the other deforms via Hitchin's deformation. Finally, we indicate a close relationship between this deformation and the notion of a Hamiltonian family of Poisson structures.
Current browse context:
math.DG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.