Mathematics > Algebraic Geometry
[Submitted on 29 Jul 2018 (v1), last revised 7 Mar 2020 (this version, v2)]
Title:Higher Ramanujan equations and periods of abelian varieties
View PDFAbstract:We describe higher dimensional generalizations of Ramanujan's classical differential relations satisfied by the Eisenstein series $E_2$, $E_4$, $E_6$. Such "higher Ramanujan equations" are given geometrically in terms of vector fields living on certain moduli stacks classifying abelian schemes equipped with suitable frames of their first de Rham cohomology. These vector fields are canonically constructed by means of the Gauss-Manin connection and the Kodaira-Spencer isomorphism. Using Mumford's theory of degenerating families of abelian varieties, we construct remarkable solutions of these differential equations generalizing $(E_2,E_4,E_6)$, which are also shown to be defined over $\mathbf{Z}$.
This geometric framework taking account of integrality issues is mainly motivated by questions in Transcendental Number Theory regarding an extension of Nesterenko's celebrated theorem on the algebraic independence of values of Eisenstein series. In this direction, we discuss the precise relation between periods of abelian varieties and the values of the above referred solutions of the higher Ramanujan equations, thereby linking the study of such differential equations to Grothendieck's Period Conjecture. Working in the complex analytic category, we prove "functional" transcendence results, such as the Zariski-density of every leaf of the holomorphic foliation induced by the higher Ramanujan equations.
Submission history
From: Tiago Jardim Da Fonseca [view email][v1] Sun, 29 Jul 2018 12:00:16 UTC (111 KB)
[v2] Sat, 7 Mar 2020 21:17:28 UTC (115 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.