High Energy Physics - Theory
[Submitted on 30 Jul 2018 (v1), last revised 11 Sep 2018 (this version, v2)]
Title:Feynman integrals, toric geometry and mirror symmetry
View PDFAbstract:This expository text is about using toric geometry and mirror symmetry for evaluating Feynman integrals. We show that the maximal cut of a Feynman integral is a GKZ hypergeometric series. We explain how this allows to determine the minimal differential operator acting on the Feynman integrals. We illustrate the method on sunset integrals in two dimensions at various loop orders. The graph polynomials of the multi-loop sunset Feynman graphs lead to reflexive polytopes containing the origin and the associated variety are ambient spaces for Calabi-Yau hypersurfaces. Therefore the sunset family is a natural home for mirror symmetry techniques. We review the evaluation of the two-loop sunset integral as an elliptic dilogarithm and as a trilogarithm. The equivalence between these two expressions is a consequence of 1) the local mirror symmetry for the non-compact Calabi-Yau three-fold obtained as the anti-canonical hypersurface of the del Pezzo surface of degree 6 defined by the sunset graph polynomial and 2) that the sunset Feynman integral is expressed in terms of the local Gromov-Witten prepotential of this del Pezzo surface.
Submission history
From: Pierre Vanhove [view email][v1] Mon, 30 Jul 2018 17:56:06 UTC (425 KB)
[v2] Tue, 11 Sep 2018 19:13:57 UTC (427 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.