Mathematics > Probability
[Submitted on 31 Jul 2018]
Title:Maximal displacement and population growth for branching Brownian motions
View PDFAbstract:We study the maximal displacement and related population for a branching Brownian motion in Euclidean space in terms of the principal eigenvalue of an associated Schrödinger type operator. We first determine their growth rates on the survival event. We then establish the upper deviation for the maximal displacement under the possibility of extinction. Under the non-extinction condition, we further discuss the decay rate of the upper deviation probability and the population growth at the critical phase.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.