Mathematics > Analysis of PDEs
[Submitted on 31 Jul 2018 (v1), last revised 23 Oct 2019 (this version, v3)]
Title:Robustness of the pathwise structure of fluctuations in stochastic homogenization
View PDFAbstract:We consider a linear elliptic system in divergence form with random coefficients and study the random fluctuations of large-scale averages of the field and the flux of the solution operator. In the context of the random conductance model, we developed in a previous work a theory of fluctuations based on the notion of homogenization commutator: we proved that the two-scale expansion of this special quantity is accurate at leading order in the fluctuation scaling when averaged on large scales (as opposed to the two-scale expansion of the solution operator taken separately) and that the large-scale fluctuations of the field and the flux of the solution operator can be recovered from those of the commutator. This implies that the large-scale fluctuations of the commutator of the corrector drive all other large-scale fluctuations to leading order, which we refer to as the pathwise structure of fluctuations in stochastic homogenization. In the present contribution we extend this result in two directions: we treat continuum elliptic (possibly non-symmetric) systems and allow for strongly correlated coefficient fields (Gaussian-like with a covariance function that can display an arbitrarily slow algebraic decay at infinity). Our main result shows in this general setting that the two-scale expansion of the homogenization commutator is still accurate to leading order when averaged on large scales, which illustrates the robustness of the pathwise structure of fluctuations.
Submission history
From: Mitia Duerinckx [view email][v1] Tue, 31 Jul 2018 12:07:01 UTC (24 KB)
[v2] Thu, 2 Aug 2018 21:33:11 UTC (24 KB)
[v3] Wed, 23 Oct 2019 22:48:27 UTC (27 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.