Mathematics > Numerical Analysis
[Submitted on 31 Jul 2018 (v1), last revised 5 Dec 2018 (this version, v3)]
Title:Adaptive BEM with optimal convergence rates for the Helmholtz equation
View PDFAbstract:We analyze an adaptive boundary element method for the weakly-singular and hypersingular integral equations for the 2D and 3D Helmholtz problem. The proposed adaptive algorithm is steered by a residual error estimator and does not rely on any a priori information that the underlying meshes are sufficiently fine. We prove convergence of the error estimator with optimal algebraic rates, independently of the (coarse) initial mesh. As a technical contribution, we prove certain local inverse-type estimates for the boundary integral operators associated with the Helmholtz equation.
Submission history
From: Alexander Haberl [view email][v1] Tue, 31 Jul 2018 13:19:05 UTC (2,277 KB)
[v2] Wed, 8 Aug 2018 07:30:19 UTC (2,277 KB)
[v3] Wed, 5 Dec 2018 13:39:37 UTC (1,076 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.