Mathematics > Representation Theory
[Submitted on 30 Jul 2018 (v1), last revised 25 Sep 2019 (this version, v2)]
Title:Generalized and degenerate Whittaker quotients and Fourier coefficients
View PDFAbstract:The study of Whittaker models for representations of reductive groups over local and global fields has become a central tool in representation theory and the theory of automorphic forms. However, only generic representations have Whittaker models. In order to encompass other representations, one attaches a degenerate (or a generalized) Whittaker model $W_{\mathcal{O}}$, or a Fourier coefficient in the global case, to any nilpotent orbit $\mathcal{O}$. In this note we survey some classical and some recent work in this direction - for Archimedean, p-adic and global fields. The main results concern the existence of models. For a representation $\pi$, call the set of maximal orbits $\mathcal{O}$ with $W_{\mathcal{O}}$ that includes $\pi$ the Whittaker support of $\pi$. The two main questions discussed in this note are: (1) What kind of orbits can appear in the Whittaker support of a representation? (2) How does the Whittaker support of a given representation $\pi$ relate to other invariants of $\pi$, such as its wave-front set?
Submission history
From: Siddhartha Sahi [view email][v1] Mon, 30 Jul 2018 18:07:37 UTC (40 KB)
[v2] Wed, 25 Sep 2019 16:19:20 UTC (40 KB)
Current browse context:
math.RT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.