Mathematics > Logic
[Submitted on 2 Aug 2018 (v1), last revised 17 Oct 2018 (this version, v3)]
Title:Separating Path and Identity Types in Presheaf Models of Univalent Type Theory
View PDFAbstract:We give a collection of results regarding path types, identity types and univalent universes in certain models of type theory based on presheaves.
The main result is that path types cannot be used directly as identity types in any Orton-Pitts style model of univalent type theory with propositional truncation in presheaf assemblies over the first and second Kleene algebras.
We also give a Brouwerian counterexample showing that there is no constructive proof that there is an Orton-Pitts model of type theory in presheaves when the universe is based on a standard construction due to Hofmann and Streicher, and path types are identity types. A similar proof shows that path types are not identity types in internal presheaves in realizability toposes as long as a certain universe can be extended to a univalent one.
We show that one of our key lemmas has a purely syntactic variant in intensional type theory and use it to make some minor but curious observations on the behaviour of cofibrations in syntactic categories.
Submission history
From: Andrew Swan [view email][v1] Thu, 2 Aug 2018 17:11:27 UTC (20 KB)
[v2] Mon, 1 Oct 2018 12:53:08 UTC (26 KB)
[v3] Wed, 17 Oct 2018 15:43:12 UTC (28 KB)
Current browse context:
math.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.