Mathematics > Complex Variables
[Submitted on 2 Aug 2018 (v1), last revised 6 Nov 2020 (this version, v4)]
Title:Mass equidistribution for random polynomials
View PDFAbstract:The purpose of this note is to study asymptotic zero distribution of multivariate random polynomials as their degrees grow. For a smooth weight function with super logarithmic growth at infinity, we consider random linear combinations of associated orthogonal polynomials with subgaussian coefficients. This class of probability distributions contains a wide range of random variables including standard Gaussian and all bounded random variables. We prove that for almost every sequence of random polynomials their normalized zero currents become equidistributed with respect to a deterministic extremal current. The main ingredients of the proof are Bergman kernel asymptotics, mass equidistribution of random polynomials and concentration inequalities for subgaussian quadratic forms.
Submission history
From: Turgay Bayraktar [view email][v1] Thu, 2 Aug 2018 17:32:19 UTC (15 KB)
[v2] Thu, 9 Aug 2018 14:44:17 UTC (16 KB)
[v3] Thu, 10 Jan 2019 12:56:56 UTC (17 KB)
[v4] Fri, 6 Nov 2020 09:14:17 UTC (17 KB)
Current browse context:
math.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.