Mathematics > Numerical Analysis
[Submitted on 3 Aug 2018 (v1), last revised 10 Jun 2019 (this version, v3)]
Title:A Bayesian Approach to Estimating Background Flows from a Passive Scalar
View PDFAbstract:We consider the statistical inverse problem of estimating a background flow field (e.g., of air or water) from the partial and noisy observation of a passive scalar (e.g., the concentration of a solute), a common experimental approach to visualizing complex fluid flows. Here the unknown is a vector field that is specified by a large or infinite number of degrees of freedom. Since the inverse problem is ill-posed, i.e., there may be many or no background flows that match a given set of observations, we adopt a Bayesian approach to regularize it. In doing so, we leverage frameworks developed in recent years for infinite-dimensional Bayesian inference. The contributions in this work are threefold. First, we lay out a functional analytic and Bayesian framework for approaching this problem. Second, we define an adjoint method for efficient computation of the gradient of the log likelihood, a key ingredient in many numerical methods. Finally, we identify interesting example problems that exhibit posterior measures with simple and complex structure. We use these examples to conduct a large-scale benchmark of Markov Chain Monte Carlo methods developed in recent years for infinite-dimensional settings. Our results indicate that these methods are capable of resolving complex multimodal posteriors in high dimensions.
Submission history
From: Justin Krometis [view email][v1] Fri, 3 Aug 2018 04:41:36 UTC (5,334 KB)
[v2] Tue, 18 Sep 2018 15:30:14 UTC (4,341 KB)
[v3] Mon, 10 Jun 2019 19:08:49 UTC (4,855 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.