Mathematics > Probability
[Submitted on 4 Aug 2018]
Title:Recurrent random walks on $\mathbb{Z}$ with infinite variance: transition probabilities of them killed on a finite set
View PDFAbstract:In this paper we consider an irreducible random walk on the integer lattice $\mathbb{Z}$ that is in the domain of normal attraction of a strictly stable process with index $\alpha\in (1, 2)$ and obtain the asymptotic form of the distribution of the hitting time of the origin and that of the transition probability for the walk killed when it hits a finite set. The asymptotic forms obtained are valid uniformly in the natural domain of the space and time variables.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.