Mathematics > Numerical Analysis
[Submitted on 4 Aug 2018]
Title:Variational regularization of the weighted conical Radon transform
View PDFAbstract:Recovering a function from integrals over conical surfaces recently got significant interest. It is relevant for emission tomography with Compton cameras and other imaging applications. In this paper, we consider the weighted conical Radon transform with vertices on the sphere. Opposed to previous works on conical Radon transform, we allow a general weight depending on the distance of the integration point from the vertex. As first main result, we show uniqueness of inversion for that transform. To stably invert the weighted conical Radon transform, we use general convex variational regularization. We present numerical minimization schemes based on the Chambolle-Pock primal dual algorithm. Within this framework, we compare various regularization terms, including non-negativity constraints, $H^1$-regularization and total variation regularization. Compared to standard quadratic Tikhonov regularization, TV-regularization is demonstrated to significantly increase the reconstruction quality from conical Radon data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.