Mathematics > Statistics Theory
[Submitted on 5 Aug 2018 (v1), last revised 26 Jun 2019 (this version, v2)]
Title:Hierarchical Change-Point Detection for Multivariate Time Series via a Ball Detection Function
View PDFAbstract:Sequences of random objects arise from many real applications, including high throughput omic data and functional imaging data. Those sequences are usually dependent, non-linear, or even Non-Euclidean, and an important problem is change-point detection in such dependent sequences in Banach spaces or metric spaces. The problem usually requires the accurate inference for not only whether changes might have occurred but also the locations of the changes when they did occur. To this end, we first introduce a Ball detection function and show that it reaches its maximum at the change-point if a sequence has only one change point. Furthermore, we propose a consistent estimator of Ball detection function based on which we develop a hierarchical algorithm to detect all possible change points. We prove that the estimated change-point locations are consistent. Our procedure can estimate the number of change-points and detect their locations without assuming any particular types of change-points as a change can occur in a sequence in different ways. Extensive simulation studies and analyses of two interesting real datasets wind direction and Bitcoin price demonstrate that our method has considerable advantages over existing competitors, especially when data are non-Euclidean or when there are distributional changes in the variance.
Submission history
From: Qiang Zhang [view email][v1] Sun, 5 Aug 2018 00:27:11 UTC (168 KB)
[v2] Wed, 26 Jun 2019 18:39:39 UTC (133 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.