Computer Science > Networking and Internet Architecture
[Submitted on 14 Aug 2018]
Title:Multi-Sector and Multi-Panel Performance in 5G mmWave Cellular Networks
View PDFAbstract:The next generation of cellular networks (5G) will exploit the mmWave spectrum to increase the available capacity. Communication at such high frequencies, however, suffers from high path loss and blockage, therefore directional transmissions using antenna arrays and dense deployments are needed. Thus, when evaluating the performance of mmWave mobile networks, it is necessary to accurately model the complex channel, the directionality of the transmission, but also the interplay that these elements can have with the whole protocol stack, both in the radio access and in the higher layers. In this paper, we improve the channel model abstraction of the mmWave module for ns-3, by introducing the support of a more realistic antenna array model, compliant with 3GPP NR requirements, and of multiple antenna arrays at the base stations and mobile handsets. We then study the end-to-end performance of a mmWave cellular network by varying the channel and antenna array configurations, and show that increasing the number of antenna arrays and, consequently, the number of sectors is beneficial for both throughput and latency.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.