Mathematics > Optimization and Control
[Submitted on 19 Aug 2018 (v1), last revised 3 Dec 2019 (this version, v3)]
Title:Adaptive Cubic Regularization Methods with Dynamic Inexact Hessian Information and Applications to Finite-Sum Minimization
View PDFAbstract:We consider the Adaptive Regularization with Cubics approach for solving nonconvex optimization problems and propose a new variant based on inexact Hessian information chosen dynamically. The theoretical analysis of the proposed procedure is given. The key property of ARC framework, constituted by optimal worst-case function/derivative evaluation bounds for first- and second-order critical point, is guaranteed. Application to large-scale finite-sum minimization based on subsampled Hessian is discussed and analyzed in both a deterministic and probabilistic manner and equipped with numerical experiments on synthetic and real datasets.
Submission history
From: Stefania Bellavia [view email][v1] Sun, 19 Aug 2018 18:01:35 UTC (23 KB)
[v2] Wed, 27 Nov 2019 10:23:08 UTC (119 KB)
[v3] Tue, 3 Dec 2019 10:24:54 UTC (119 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.