Mathematics > Complex Variables
[Submitted on 20 Aug 2018]
Title:Elliptic characterization and localization of Oka manifolds
View PDFAbstract:We prove that Gromov's ellipticity condition $\mathrm{Ell}_1$ characterizes Oka manifolds. This characterization gives another proof of the fact that subellipticity implies the Oka property, and affirmative answers to Gromov's conjectures. As another application, we establish the localization principle for Oka manifolds, which gives new examples of Oka manifolds. In the appendix, it is also shown that the Oka property is not a bimeromorphic invariant.
Current browse context:
math.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.