Mathematics > Optimization and Control
[Submitted on 24 Aug 2018 (v1), last revised 28 Mar 2019 (this version, v2)]
Title:Stability of Metabolic Networks via Linear-In-Flux-Expressions
View PDFAbstract:The methodology named LIFE (Linear-in-Flux-Expressions) was developed with the purpose of simulating and analyzing large metabolic systems. With LIFE, the number of model parameters is reduced by accounting for correlations among the parameters of the system. Perturbation analysis on LIFE systems results in less overall variability of the system, leading to results that more closely resemble empirical data. These systems can be associated to graphs, and characteristics of the graph give insight into the dynamics of the system. This work addresses two main problems: 1. for fixed metabolite levels, find all fluxes for which the metabolite levels are an equilibrium, and 2. for fixed fluxes, find all metabolite levels which are equilibria for the system. We characterize the set of solutions for both problems, and show general results relating stability of systems to the structure of the associated graph. We show that there is a structure of the graph necessary for stable dynamics. Along with these general results, we show how stability analysis from the fields of network flows, compartmental systems, control theory and Markov chains apply to LIFE systems.
Submission history
From: Zheming An [view email][v1] Fri, 24 Aug 2018 18:41:16 UTC (574 KB)
[v2] Thu, 28 Mar 2019 16:18:15 UTC (56 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.