Mathematics > Probability
[Submitted on 22 Sep 2018 (v1), last revised 21 Aug 2022 (this version, v4)]
Title:Uniform distributions on curves and quantization
View PDFAbstract:The basic goal of quantization for probability distribution is to reduce the number of values, which is typically uncountable, describing a probability distribution to some finite set and thus to make an approximation of a continuous probability distribution by a discrete distribution. It has broad application in signal processing and data compression. In this paper, first we define the uniform distributions on different curves such as a line segment, a circle, and the boundary of an equilateral triangle. Then, we give the exact formulas to determine the optimal sets of $n$-means and the $n$th quantization errors for different values of $n$ with respect to the uniform distributions defined on the curves. In each case, we further calculate the quantization dimension and show that it is equal to the dimension of the object; and the quantization coefficient exists as a finite positive number. This supports the well-known result of Bucklew and Wise (1982), which says that for a Borel probability measure $P$ with non-vanishing absolutely continuous part the quantization coefficient exists as a finite positive number
Submission history
From: Mrinal Kanti Roychowdhury [view email][v1] Sat, 22 Sep 2018 02:01:14 UTC (22 KB)
[v2] Mon, 26 Nov 2018 16:06:59 UTC (17 KB)
[v3] Tue, 16 Aug 2022 17:15:23 UTC (17 KB)
[v4] Sun, 21 Aug 2022 06:33:49 UTC (17 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.