Computer Science > Information Theory
[Submitted on 22 Sep 2018]
Title:The Impact of Correlated Blocking on Millimeter-Wave Personal Networks
View PDFAbstract:Due to its potential to support high data rates at low latency with reasonable interference isolation, millimeter-wave (mmWave) communications has emerged as a promising solution for wireless personal-area networks (WPAN) and an enabler for emerging applications such as high-resolution untethered virtual reality. At mmWave, signals are prone to blockage by objects in the environment, including human bodies. Most mmWave systems utilize directional antennas in order to overcome the significant path loss. In this paper, we consider the effects of blockage and antenna directivity on the performance of a mmWave WPAN. Similar to related work, we assume that the interferers are in arbitrary locations and the blockages are drawn from a random point process. However, unlike related work that assumes independent blocking, we carefully account for the possibility of correlated blocking, which arises when two interferers are close to each other and therefore an obstruction that blocks the first interferer may likely block the second interferer. Closed form expressions for the blockage correlation coefficient and the distribution of the SINR are provided for the case of two dominant interferers and a fixed number of blockages drawn from a binomial point process. Finally, the effects of antenna directivity and the spatial randomness of the interferers are taken into account, resulting in SINR curves that fully account for correlated blocking, which are compared against curves that neglect correlation. The results provide insight into the validity of the commonly held assumption of independent blocking and the improved accuracy that can be obtained when the blocking correlation is taken into account.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.