Mathematics > Dynamical Systems
[Submitted on 12 Oct 2018 (v1), last revised 14 Aug 2019 (this version, v2)]
Title:Joining and decomposing reaction networks
View PDFAbstract:In systems and synthetic biology, much research has focused on the behavior and design of single pathways, while, more recently, experimental efforts have focused on how cross-talk (coupling two or more pathways) or inhibiting molecular function (isolating one part of the pathway) affects systems-level behavior. However, the theory for tackling these larger systems in general has lagged behind. Here, we analyze how joining networks (e.g., cross-talk) or decomposing networks (e.g., inhibition or knock-outs) affects three properties that reaction networks may possess---identifiability (recoverability of parameter values from data), steady-state invariants (relationships among species concentrations at steady state, used in model selection), and multistationarity (capacity for multiple steady states, which correspond to multiple cell decisions). Specifically, we prove results that clarify, for a network obtained by joining two smaller networks, how properties of the smaller networks can be inferred from or can imply similar properties of the original network. Our proofs use techniques from computational algebraic geometry, including elimination theory and differential algebra.
Submission history
From: Anne Shiu [view email][v1] Fri, 12 Oct 2018 15:24:48 UTC (371 KB)
[v2] Wed, 14 Aug 2019 16:29:30 UTC (359 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.