Mathematics > Analysis of PDEs
[Submitted on 18 Oct 2018]
Title:Double phase problems with variable growth
View PDFAbstract:We consider a class of double phase variational integrals driven by nonhomogeneous potentials. We study the associated Euler equation and we highlight the existence of two different Rayleigh quotients. One of them is in relationship with the existence of an infinite interval of eigenvalues while the second one is associated with the nonexistence of eigenvalues. The notion of eigenvalue is understood in the sense of pairs of nonlinear operators, as introduced by Fučik, Nečas, Souček, and Souček. The analysis developed in this paper extends the abstract framework corresponding to some standard cases associated to the $p(x)$-Laplace operator, the generalized mean curvature operator, or the capillarity differential operator with variable exponent. The results contained in this paper complement the pioneering contributions of Marcellini, Mingione et al. in the field of variational integrals with unbalanced growth.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.