Mathematics > Geometric Topology
[Submitted on 18 Oct 2018]
Title:Minimal length product over homology bases of manifolds
View PDFAbstract:Minkowski's second theorem can be stated as an inequality for $n$-dimensional flat Finsler tori relating the volume and the minimal product of the lengths of closed geodesics which form a homology basis. In this paper we show how this fundamental result can be promoted to a principle holding for a larger class of Finsler manifolds. This includes manifolds for which first Betti number and dimension do no necessarily coincide, a prime example being the case of surfaces. This class of manifolds is described by a non-vanishing condition for the hyperdeterminant reduced modulo $2$ of the multilinear map induced by the fundamental class of the manifold on its first ${\mathbb Z}_2$-cohomology group using the cup product.
Current browse context:
math.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.