Mathematics > Numerical Analysis
[Submitted on 18 Oct 2018]
Title:Superconvergence of Numerical Gradient for Weak Galerkin Finite Element Methods on Nonuniform Cartesian Partitions in Three Dimensions
View PDFAbstract:A superconvergence error estimate for the gradient approximation of the second order elliptic problem in three dimensions is analyzed by using weak Galerkin finite element scheme on the uniform and non-uniform cubic partitions. Due to the loss of the symmetric property from two dimensions to three dimensions, this superconvergence result in three dimensions is not a trivial extension of the recent superconvergence result in two dimensions \cite{sup_LWW2018} from rectangular partitions to cubic partitions. The error estimate for the numerical gradient in the $L^{2}$-norm arrives at a superconvergence order of ${\cal O}(h^r) (1.5 \leq r\leq 2)$ when the lowest order weak Galerkin finite elements consisting of piecewise linear polynomials in the interior of the elements and piecewise constants on the faces of the elements are employed. A series of numerical experiments are illustrated to confirm the established superconvergence theory in three dimensions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.