Mathematics > Numerical Analysis
[Submitted on 18 Oct 2018]
Title:The Funk-Radon transform for hyperplane sections through a common point
View PDFAbstract:The Funk-Radon transform, also known as the spherical Radon transform, assigns to a function on the sphere its mean values along all great circles. Since its invention by Paul Funk in 1911, the Funk-Radon transform has been generalized to other families of circles as well as to higher dimensions. We are particularly interested in the following generalization: we consider the intersections of the sphere with hyperplanes containing a common point inside the sphere. If this point is the origin, this is the same as the aforementioned Funk--Radon transform. We give an injectivity result and a range characterization of this generalized Radon transform by finding a relation with the classical Funk--Radon transform.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.