Mathematics > Optimization and Control
[Submitted on 19 Oct 2018 (v1), last revised 1 Apr 2019 (this version, v2)]
Title:Using tropical optimization techniques in bi-criteria decision problems
View PDFAbstract:We consider decision problems of rating alternatives based on their pairwise comparisons according to two criteria. Given pairwise comparison matrices for each criterion, the problem is to find the overall scores of the alternatives. We offer a solution that involves the minimax approximation of the comparison matrices by a common consistent matrix of unit rank in terms of the Chebyshev metric in logarithmic scale. The approximation problem reduces to a bi-objective optimization problem to minimize the approximation errors simultaneously for both comparison matrices. We formulate the problem in terms of tropical (idempotent) mathematics, which focuses on the theory and applications of algebraic systems with idempotent addition. To solve the optimization problem obtained, we apply methods and results of tropical optimization to derive a complete Pareto-optimal solution in a direct explicit form ready for further analysis and straightforward computation. We then exploit this result to solve the bi-criteria decision problem of interest. As illustrations, we present examples of the solution of two-dimensional optimization problems in general form, and of a decision problem with four alternatives in numerical form.
Submission history
From: Nikolai Krivulin [view email][v1] Fri, 19 Oct 2018 19:27:21 UTC (21 KB)
[v2] Mon, 1 Apr 2019 09:27:51 UTC (21 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.